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SUMMARY 

The relation betv/een group velocity and the velocity of energy transport for sur- 

face waves ia plane-stratified,  anisotropic,  dispersive media,  which was derived in (1), 

is verified by direct calculation for the case of surface waves on a uniaxial,  cold plasma 

slab located in free space.    A superimposed D. C.   magnetic field of infinite strength and 

parallel to the interfaces generates the uniaxial anisotropy in the slab.    Surface waves 

having an arbitrary direction of propagation with respect to the D. C.  magnetic field are 

considered.    A useful graphical presentation of the dispersion relation is given,  from which 

the direction of propagation of "surface wave rays" is directly obtained. 

This research was supported by the; Office of Naval Research,   Washington,  D. C. ,  under 
Contract No.  NONR 839(38).    ARPA Order No,   529. 
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INTRODUCTION 

The group velocity of a surface wave propagating in a plane-stratified,   anisotropic, 

dispersive medium that is also linear and lossless has been shown to be equal to the veloc- 

ity of energy transport of the surface wave as a whole. This velocity is defined as the 

integral of the real part of the Poynting vector over the coordinate in the direction of 

stratification divided by the integral of the stored energy density over this coordinate.    In 

this paper the ab Dve relation is verified by direct calculation for the case of surface waves 

supported by a uniaxial,   cold-electron plasma slab.    The plasma slab is assumed to be of 

infinite extent and to be located in free space.    A static magnetic field of infinite strength 

and parallel to the interfaces between the plasma and free space generates the anisotropy. 

The characteristics of trapped surface waves propagating on anisotropic plaema 

slabs have been discussed in the literature for various specific directions of propagation 
(2) relative to the static magnetic field.    Wait       has considered the surface waves propagating 

on a thin   plasma slab with an arbitrary static magnetic field.    Requiring the plasma slab 

to be thin reduces the effect of the static magnetic field to that which would be produced by 
(3) the component normal to the slab alone.    Meltz and Shorev      discuss the excitation of sur- 

face waves on a slab of arbitrary thickness when the static magnetic field is perpendicular 

to the slab and of infinite strength.    In both of these cases,   the anisotropy is such that the 

slab configurations have rotational symmetry about the coordinate normal to the slab and 

hence the characteristics of the surface waves will be independent of the direction of propa- 

gation.    Furthermore,   as in isotropic slab configurations,   the velocity of energy transport 

of surface waves on these slab configurations will be parallel to the transverse wave vector. 

When the static magnetic field is parallel to the air-plasma interfaces,   the effect 

of the resultant anisotropy is more striking since then the characteristics of the surface 

waves on the slab depend on their directions of propagation with respect to the static mag- 

netic field.    Also,  the velocity of energy transport will not be parallel, in general,  to the 

transverse wave vector.    Examples found in the literature,   of surface waves on slab con- 

figurations with axis of anisotropy parallel to the interfaces,   do not illustrate these aniso- 

tropic effects as they are restricted either to propagation along    '   '      or normal       to the 

static magnetic field.    In either case,   the velocity of energy transport is parallel to the 

transverse wave vector.    In this paper,  however,   the surface wave fields are considered 

for arbitrary directions of propagation with respect to the static magnetic field of infinite 

strength.    It will be shown that for this configuration,  the velocity of energy transport of 

each surface wave is not parallel,   in general,   to the transverse wave vector,   and that the 

direction,   as well as the magnitude,  of the real part of the complex Poynting vector varies 



with the coordinate normal to the slab.    Thus the slab configuration provides a non-trivial 

example of the equality of the surface wave's group velocity and its energy transport 

velocity.    The excitation of the surface waves is> ..ct considered here. 

In the first section of this paper the fields and dispersion relation of the E-type 

surface waves, which have no component of R. F. magnetic field along the static magnetic 

field, are found. A graphical procedure for solving the dispersion relation and the prop- 

erties of the dispersion curves are discussed in the second section. The last section is 

devoted to an analytical verification of the equality of group velocity and energy transport 

velocity for the surface waves. The Appendix contains a proof that the uniaxia.l slab con- 

figuraaon can support only the E-type surface waves described in the body of the paper. 

FIELDS AND DISPERSION RELATION 

In this section,  the fields and dispersion relation for surface waves on a uniaxial 

electron plasma slab are found.    The plasma within the slab is homogeneous and the super- 

imposed   D. C.    magnetic field,   which is assumed to be of infinite strength,   is parallel in 

the   y   axis (see Fi^'.   1).    In the linear or small signal approximation,   the interaction of 

the uniaxial plasma with a monochromatic electromagnetic field may be described by a 

relative dielectric tensor   c " .    Neglecting collision loss,   when the   D. C.    magnetic field 
(3  4) is in the   y   direction,   e'   takes the form    ' 

Ce'] 

1     o     o-i 

0    1-X   o 

L0       0        1 

(1) 

where   X= (uu   /UJ) '   and   u      is the electron plasma frequency.     Thus in the plasma 

slab   c = c   e '   while in the air regions   e = e    1  ,   .vhere   1 is the unit dyadic.    The per- 

meability tensor   ia is given everywhere by   ja = |_i   1 . 

The surface wave fields,   which decay exponentially in the air regions,  have trans- 
-j(kxx + k y) 

verse dependence   e        ' y    ,  k    and k     being real transverse wave numbers.    These 
x y n 

fields will be constructed from those plane wave solutions appropriate to the plasma reg- 

ion and those apprapriate to the free space regions.    The plane wave solutions appropriate 

to the plasma slab are those waves of the form 
e'(k) 

^jk     r 
E(r,k) 

H{r,k) h'(k) 
(2) 
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Fig.   1     Physical Configuration of the Anisotropie Plasma Slab. 

which can propagate in an infinite homogeneous plasma described by the relative dielectric 

tensor   e'   given in (1).    Similarly,  the plane wave solutions appropriate to the free space 

are those having the form given in (2) which can exist when the plasma slab is absent. 

The plasma plane waves are found by substituting   E and H   from (2) into Maxwell's 

equations.    The resultant equations are,   when the time dependence   e}     'Is suppressed. 

kxe ' =   JüU0 h' 

kxh' ^co£-l 

(3) 

A, Multiplying the first equation by   kx   and substituting the second gives   kx(k x e )= -k e • e, 
2      2 . . with   k   = uu   e   U   •    Expanding the triple cross-product,   this equation may be written in 

dyadic form as 

(k2e'+kk-k2l) • e' o ~ —   -     — 
(4) 

which is equivalent to three homogeneous equations in three unknowns.    For there to be 

non-trivial solutions of (4),  the determinant of the matrix representation of the dyadic 
2 2 operator   (k   c' + kk-k   1) must vanish.    Letting   k=k_   +z   K,  with k   = x  k   + v   **•  the 



vanishing of the determinant results in the plane wave dispersion relation D (k , u) s 0 

for an infinitely extended, homogeneous, uniaxial plasma. This plans wave dispersion 

relation maybe solved for   H.    Four solutions result,  which are 

K   - (5) 

±VU-X)(k  -k.)-k' 
\ 

The sign choice before each root refers    to waves carrying power or decaying in the 

positive or negative   z   direction.    Substituting each of the four solutions given in (5) into 

(4),  the corresponding field vector   e'   can be found.    Finally,  the pertinent   h' can be 

calculated from (3). 

The above method may be repeated to find the plane wave fields   e ' and h'    for 

free space.    Since   k     must be the same for the entire    urface wave if the transverse 

fields are to be continuous everywhere across the planes   z = ± d,  it follows that the free 

space wave vector   k     =iSf + zn
H-    Substituting the form of  E and H given in (2) into 

Maxwell's equations for free space gives 

k    x e'   =  x'Li   h' 
-a     -a Mo-a 

k    x h'   --wee' 
— a    —a o— a 

(6) 

From (6),  the homogeneous equations that determine   e'    are found,  in dyadic form,  to 

be 

[{k2-k2)l +k   k   ]■ e'  -- 0    . (7) o   —a   _     —a — aJ   —a 

From the requirement that the determinant of the matrix representation of 
2       2 

[(k   -k   )1+ k   k  1   vanish for non-trivial solutions of  e'   to exist,  one can solve for Lo—a~—a—aJ —a 
H.   as 

a 

«a   = ^V^    • (8) 

When these values of  H     are used,  (7) reduces to   k    • e ' = 0,  i. e. ,  the plane wave 
a ■" a   —* a 

electric field is orthogonal to the wave vector   k ,  a condition that does not uniquely 
fit 

determine   e' .    Commonly chosen solutions for   e'   are those corresponding to   TM and *~ a a 
TE   modes with respect to the z direction.    Other possible choices for   e',  which will 



prove more useful in this analysis,   are those of the so-called E-type and H-type modes, 

which are appropriate linear combinations of the TM and TE modes.    The E-type modes 

with respect to   y   are characterized by the vanishing of the   y   component of the magnetic 

field,  while the H-type modes are characterized by the vanishing of the   y   component of 

the electric field. 

In each region,  the surface wave fields will be a combination of the plane wave 

solutions appropriate to that region, the relative amplitudes of which can be found from 

the radiation condition   and     the continuity conditions at   z = ±d.    Since the free space 

outside the slab is homogeneous,  the surface waves are characterized by an axponential 

decay of their fields away from the slab.    Such decay requires that   H     be imaginary and 

that for Region 1 the sign choice in (8) be taken to give   H    = -J|K   | «   SO that the fields will 

decay in the positive   z   direction.    For the plane waves in Region 3, the sign must be 

taken so as to give   K   = J|H   I,  which will result in fields that decay in the negative   z 
a a 

direction. 

It will be shown later that a surface wave,  whose fields in the plasma slab are a 
i 2 2 j- 

combination of those plane wave fields corresponding to   H
S
 ±V(1-X)(k   -k )-k    ,  exists 

only for   X>1.    In the Appendix it is shown that H-type surface wave modes,  characterized 

by the vfmishing of the y component of the electric fieJd,  cannot propagate on the uniaxial 

plasma slab.    The plane wave fields in the plasma region corresponding to 
f 2 2       2' 

H=±T(l-^')(k   -k)-k     are E-type modes and have the form 

A[x    kk    -y    (k-k)lz    k -oxy     -^-oo      y      —o\ 1 

h' =   A ute   [x    M — o  — o z    k   1 
— o    X" 

(9) 

with A an arbitrary constant. 

As mentioned earlier,   the only requirement on   e '   is that   k  • e '   =  0     Hence 
—a —a  —a ' 

we may arbitrarily select the transverse part of  e'   and then use the requirement 

-a'-a = 0   to find'h6 correspondmg   z   component of   e'.    A particularly useful form of 

the transverse part of e^   is obtained by choosing it to be identical with the transverse 

part of e' as given in (9).    This choice will be seen to simplify the application of the con- 

tinuity requirement on the transverse fields at   z = ± d.    Following this procedure one finds 

e' =   B[x   k —a —o   x   y k    - y   (k2- k2) + z ■t-o   o     v      — k   H   ] o   y   a 

ila=   B,t,co[i5oKa--2okx] 

(10) 



with   B   an arbitrary constant.    It is seen that the transverse part of  ha'   has the same 

vector direction as the transverse part of   h'.    It will thus be possible to satisfy the con- 

tinuity conditions at   z = id   up'ng only the plane waves exhibited in (9) and (10). 

Since the w .vc number   K     muFt be imaginary,  let 
a 

V?^" (ID 

so that K   - ija   where   a   is real and positive.    Then in Region 1, H   = -jr:,  for 
a Si 

decay in the positive   z   direction,   and if   P=x   x+^r    y,   the fields are 

^    =    Bl^0
kxky-lJkO-k5)--Z.oJky^

e"aZe'J"t"£ 

-jk   .p Ü2) 

s = Br^0
[^oJa-^o

kx^"aZe ~ - 
while in Region 3, ja.   and the corresponding fields are 

E   =   B,[x   k   k    - y    (k2-^) + z   jk   a]eaz e — 3—oxy     -^-oo      y      —c'y 

-j kf " P 
H =   B.ne   [x   ja - z   k  ] eaz e       t   - 3      o—oJ —ox 

-jkt£ 

;i3) 

The constants   B.  and B     have yet to be determined. 

For simplicity in what follows,   we define   ^   as 

S   = VTl-XHk^-k2) - k2 
(14) 

so that in (5)   H = ±3.    It will be shown that for a surface wave to propagate on the slab   <? 

must be real.    The fields in Region 2 will be the sum of the fields of the two plane waves 

having the vector form displayed in (9) and traveling in opposite directions along   z.    The 

most general form of such a sum is 

and 

E   =   {[x    kk    - v   (k2-k2)] (A, e'^"5 z + A,ej^z) —        I -o   x   y     -^-o    o      y   J       1 2 

H 

+ z    k  S (A. e — o   y 1 

^cJx^^e-J^-A^82) 

•jaz A2e^z)}e 
•jkt0 

c L—o 

• z    k   (A^-J^ + A.e^^le -o   x      1 2 ' J 
■jkt- P 

(15-a) 

(15-b) 



with   A    and A,   to be determined from the boundary conditions at   z = ±d. 

Requiring   E   and H    to be continuous at   z = ±d   results in four homogeneous 

equations in four unknowns from which the relative amplitudes as well as the surface 

wave dispersion relation can be found.    The continuity conditions at   z = d   given the equa- 

tions 

Bje"^ =   A^-i^+A^6 

-jaB^ ■ad =   B(A1e-J0d.A2eJ9d) 

(16-a) 

while those at   z=-d   result in 

B3e-ad=   A^J^+A^'J^ 

jaB3e-ad=   BlA^W-A^-i**) 
(16-b) 

Elimination of   B,   from the first two equations and   B,   f .-om the second two gives the 

set 

0  = A.e-J&d(l +i-)+ A,eJ0d(l - J-) 

0  = A1e^
d(l-S.)+A,e-J8d(l+i-) 

1 ja 2 jo- 

in) 

which has a non-trivial solution for   A.  and A,   only if the determinant of the coefficients 

is zero.    The vanishing of the determinant yields the surface wave dispersion relation 

'i4Bd-4^l'=° US) 

If expressions (11) and (14) for   a and 0   in terms of  k , k    and k   = U)Je u     are sub- r x    y o       ^  o o 
stituted into (18),  the dispersion relation is seen to be of the form   D (k , OJ) =  0. 

PROPERTIES OF THE DISPERSION RELATION 

As given in (14),  3   is either real or imaginary for all real   k    and k .    Let us x y 
first verify that no solutions of (18) exist for which   0   is imaginary.    If  3  is imaginary, 

i.e.,  8   =  ±j|(3|,  then (18) becomes 



e^iM"     ::   f    « JiXLl   ) 2 . {l9) 
, + 41310 _/ai|e| 

a + |0 

The left-hand side is less (greater) than unity while the ri^ut-hand side is greater (less) 

than unity.    This contradiction verifies the assertion.    When   ß is real, however, both 

terms in (18) have magnitude unity so that a solution is possible.    In order to find the 

range of frequencies for which (18) has solutions, based on the restriction that   (3   be real, 

we plot for all   X > 0   those regions in the    k   - k     plane where   ß   is real and the region x       y 
where   a   is real (see Fig.   2).    From Fig.   2 it it ...een that the regions where   ß   is real 

and the region where   a   is real overlap only when   X >1.    Hence the possibility that sur- 

face waves can propagate exists only for   X > 1.    In passing,  observe that (18) remains 

invariant under the substitution of   -8 for   ß .    Thus it is sufficient to consider only posi- 

tive values of   ß.    Since the slab configuration has mirror symmetry in the plane   z = 0, 

the surface wave fields will correspond to either an open-circuit or a short-circuit 

bisection of the slab (even and odd solutions in   z).   The dispersion relation given in (18) 

can be split into two independent dispersion relations, one giving the open-circuit bisection 

solutions and the other the short-circuit bisection solutions.    These are 

ej2ßd   =   ±ia±B (20) 
ja - ß 

where the plus and minus signs correspond to short-circuit and open-circuit bisections, 

respectively.    Using the plus sign for the short-circuit bisection case,  the dispersion 

relation may be put in the form 

a = -ßcot ßd    , (21) 

whereas if the minus sign is used,  the dispersion relation for the open-circuit bisection 

case can be written 

a = ßtan ßd (22) 

with   a and ß   as given in (11) and (14). 

A graphical method for solving equations (21) and (22) is described below. 

In order to show that equations (21) and (22) are satisfied for real values of  k , k     and 

au < u)   ,   i. e. ,    X > 1, the plots of (21) and (22) in the    8 - a  plane are considered. 

Since   a   and   8   have been taken to be positive,  only the first quadrant is of interest. 



a REAL OUTSIDE 
CIRCLE  kJ+kSk2 

ß*0 FOR X>l 

ß*0 FOR X<l 

^»0 FOR X>l 

Fig.   2     Regions of Real   8   and  a in the   k 
x   ky   Plane- 
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Adding   a   to ß     gives   a   +0    = X(k   -k )   when (11) and (14) are used.    Because 
2      2 y     0 

k   > k     for surface, waves,  as can be seen from Fig.   2,  the plot of this relation in the 
I       2      2 8 - a  plane is a circle whose radius is  ,VX(k   - k   ) .    The intersection of this circle with 

the plot of (21) or (22) gives   a and 8   from which   k     can be found using 

kx =   ±1/-3j[(X.l)a2"32]    . (23) 

x 

But  kx   must be real so that in the first quadrant only those intersections for which 

give values of  a and 3   which correspond to an actual surface wave.    Since 

^^ 2 2 a and 3   depend only on k   andk    and not merely on k ork , constant uu surface wave dis- y x y        x 
persion curves will have mirror symmetry about the   k    and k     axes in the   k - k     plane. 

Thus, knowing the relation between   k    and k     for   k ,k   > 0   is sufficient to determine 0 x y x    y — 
the entire dispersion curve. 

Figure 3 has been sketched to show the method outlined above for finding that   k 

which satisfies   (21) when   k    andk     are given.    Each branch of   -Bcotgd   depicted in 

Fig.  3 corresponds to a particular short-circuit bisection surface wave mode.    Since there 

are an infinite number of such branches,  there will be an infinite number of short-circuit 
2      2 2      2 bisection surface wave modes when   X(k   -k   ) -.".    For a finite value of   X(k   -k )   only y     o y     o ' 

a finite number of surface wave modes can propagate.    For values of   a and 3   in the 
ii 2     2 

shaded region of Fig.  3, k ,  as found from   k    =±J^[(X-l)a -8   ].  is imaginary.    Thu-: 
X X Tf A »2 

it is seen that for fixed   k     each mode has a minimum value of  k^ > k     at which   k   = 0 
o y       o      2 x 

and below which no real solutions for   k     exist.    The minimum value of  k     for which a x y 
particular surface wave mode can exist is found from the condition that the circle 

2       2 2      2 1 a   +8    =X(k-k),  the line   a  =    -—. 9   and that branch of   a =  -3 cot 3d   corresponding 
7     0 ™-T - 

to the mode in question all intersect at a common point.    As   k     increases from its 

minimum value, k     and the corresponding solutions for   k     for each branch of   -3cot8d 

trace out the surface wave dispersion curves in the   k - k     plane of the short-circuit 

bisection modes. 

In a similar fashion.  Fig.  4 depicts the method for finding that   k     which satisfies 

(22) when   k   and k     are given.    From this figure and Fig.   3,  it is seen that the lowest 

surface wave mode on the slab,  i. e. ,  the one with the smallest value of  3. is that open- 

circuit bisection mode corresponding to the branch of  3 tan 3d   starting at   9=0.    As in 

the case of the short-circuit bisection modes,  k     corresponding to values of  3   and   a 



11 

Fig.   3     Construction for Finding Solutions of the Surface Wave 

Dispersion Relation for the Short-Circuit Bisection Case. 

Fig.   4    Construction for Finding Solutions of the Surface Wave Dispersion 
Relation for the Open-Circuit Bisection Case. 
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in the shaded region of Fig.  4 is imaginary.    Thus for each of the higher open-circuit 
2       2 

bisection modes there will be a minimum value of   k   >k     at which   k  =0   and below y       o x 
which no real solution for   k     exists.    For the lowest open-circuit bisection mode 

d X 

[ jg-CÖ tan 0d)]fi_o = 0   so that a part of the branch of   0tan3d   starting at   p = 0   lies in the 

shaded region of   Fig.   4.    Hence there will also be a minimum value of  k   >k     for the 00 y      o 
lowest surface wave mode below which no real solution for   k     exists.    As in the ehort- 

2 x 

circuit bisection case,  when  k     increase? from its minimum value for a particular mode 
y 

and for a fixed   k ,  k     and the corresponding value of   k     trace out the dispersion curve o      y re x 

of that op«;n-circuit bisection mode. 

In what follows,  the basic properties of the surface wave dispersion curves will 

be derived.    For any one mode,  these properties lead to the form of the dispersion 

curves shown in Fig.   5,  which has been drawn for two different frequencies   uu, > UJ..    In 

order to find the shape of the dispersion curves of any one mode and for fixed   uu,  we con- 

sider the corresponding branch of   -Scot 0d   in Fig.   3 or of   0 tan ßd   in Fig.   4.    As 

pointed out previously,  the dispersion curves are symmetric about the   k   and k     axes 

so that we need find only that portion of the curves in the first que-drant of Fig.   5.    Also, 

as was previously discussed,  in the first quadrant of Fig.  5, k     takes on its minimum 

value, which is greater than  k ,  at   k = 0,  i. e. ,  where the dispersion curve crosses the 

k   axis.    It will first be shown that in the first quadrant,  k     is a single-valued,  mono- 

tonically increasing function of  k .    These two facts indicate that the inverse function, 

k =k (k ),  is single-valued and monotonically increasing in the first quadrant as is 

depicted in Fig.   5.    Other fundamental properties of that portion of the dispersion curve 

in the first quadrant of Fig.  5 that will be established are:   1)   dk /dk    =0   at   k = 0; 

2)   asymptotically as   k -•00, k ~k /^X-l   and the dispersion curve everywhere lies above 
Y    y   x 

the asymptote   k =k / JX- 1 ;   3)   the value of   k   at   k   = 0,  as well as the slope of the y     x  ~ y x 
asymptote,  increase with   UJ.    One question that has not yet been answered analytically is 

whether the surface wave dispersion curves have inflection points. 
To see that in the first quadrant of Fig.   5, k     is a single-valued function of   k , x y 

observe that for 3>0,a>0    each branch of   -0 cot Sd   in Fig.   3 and each branch of   ßtanßd 
2      2 2      2 in Fig.   4 intersects the circle   a + 0    = X(k   -k )   only once.    Thus for a given   m    and 

for each value of   k    and uu there will be only one set of values   (0, a)   for each mode and 
y 

hence from (23) only one value of   k   > 0   for each mode.    Therefore,  in the first quadrant 

of Fig.   5,k     is a single-valued function of   k  .    That   k     is a monotonically increasing 

function of   k     can be inferred from the sign of   dk  /dk  .    Since   k    and k     satisfy the y 0 x        y x y 
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ky (U£>tü1 

DIRECTION OF\ 
POWER FLOW/ 

ASYMPTOTES 

Fig.   5    Dispersion Curves for a Typical Surface Wave Mode With   u, as a Parameter. 
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surface wave dispersion relation D (k , w) - 0,  dk /dk     for fixti   uu is given by 
öDs /3Ds x    y 

dkx/dk    =  - -jj^ / ^T "    Using   Ds   as given in the left-hand side of (18),  with   a and 8 
y /       x 

defined in (11) and (14),  it is found that 

dk k     ad(X-l) +k2/(k2.k2) 

dk        k ad + 1 • U4' y x 

From (24) we see that in the first quadrant of P'ig.   5, dk /dk   > 0   and hence, k (k )   is i 0      '     x      y '   x   y 
a monotonically increasing function.    Furthermore,  (24) shows that   dk /dk   = 0 at k  =0 ° y      x x 
as is depicted in Fig.   5. 

2     2 2      2 As   k   -• • ,  the value of   g   at the intersection of the circle   a + 3   = X(k   -k   ) y y     o 
and any one branch of   -3 cot ßd   in Fig.   3 or any one branch of   3 tan 0d   in Fig.   4 

2 2 approaches a constant.    Thus,  since   k     has been assumed constant,    a   " Xk     as   k ->« r o y y 
and hence, from (23), kx   in the first quadrant of Fig.   5 is asymptotically given by 

k   -.k   *X-1   or conversely  k   -k /ifX-1.    That the dispersion curve lies above the asymp- x     y   y     x '    r 

tote line   k =k /VX-l,  as shown in the first quadrant of Fig.  5,  can be deduced from the 

definition of   ß   given in (14).    Since   ß   is real for the.surface waves and   X> 1, 

(X.l)k2- \2 = ß2+k2(X-l) > 0 and therefore in the first quandrant   k   > k /Vx-1,  which y     x o n y       x 
proves that the dispersion curve lies above the asymptote line.    When   uu increases but 

remains below   uu ,   X   decreases to unity and hence the slope of the asymptote,   l/^X-l, 

increases as is depicted in Fig.   5.    Furthermore,  as   ju increases the slope of the line 

a- ß/tX-l   in Fig.   3 and Fig.  4 increases.    Hence the values of   ß and a at k  =0,   as 

determined from the intersection of the line   a- ß/WX-1   with any branch of   -ßcot ßd   in 

Fig.  3   or of   ßtanßd   in Fig.   4,  must increase.    Because   k     increases with   cu and X 
12      2 2        2 0 

decreases, the quantity -«(a +9  ) + k    = k     must increase and thus the magnitude of  k 

at   k =0   increases with   if.    The above-described variation with   uu of  k     at   k = 0   is x y x 
depicted in Fig.  5. 

Thus the fundamental properties previously stated for the surface wave dispersion 

curves of any one mode are seen to hold.    These properties indicate that the dispersion 

curves will have the form depicted in Fig.   5,  with the possible exception of inflection 

points,  for two different frequencies.    From Fig.   3 and Fig.  4 it can also be seen that 

surface waves exist for all   yu   in the range   0 < ui< uu .    Lastly,   since in the first quadrant 
dk ^ of Fig.  5,-—i > 0,  which follows from (24),   and since the dispersion curve for   uu*uu?   lies 

x 



15 

above that for   m = a» '^ a;,,   the   x   component of  7.   ^ must everywhere be negative.    That 

the dispersion curve for   üU = ULU   lies above that for   uu = uu, < u)?   follows from the fact that 

at   k = 0   the   UU=ID.   curve lies above the   U)=u),   curve and the two curves never cross x 1 Z 
since   7.   uu,  which is given in (42),  is never infinite.    The observation that  x • 7,   IJU>0   is 

—t —t 
confirmed by the analytic expression for   7.   $ given in (42) and indicates that the surface 

-t 
waves are of the backward wave type with respect to the   x   direction. 

GROUP VELOCITY AND ENERGY TRANSPCRT VELOCITY 

Having established the basic properties of the dispersion relation of the surface 

waves on a uniaxial plasma slab, the equality of group velocity and energy transport 

velocity for these surface waves will be verified by direct calculation.    This relation is 

given in Reference (1) as 

-t i I v OP »so 

where  £   represents the real part of the complex Poynting vector   Ex H     and   w   the time 

average stored energy density.    To this end,  the relative field amplitudes are first cal- 

culated.    Since one of the coefficients A    ATIB. and B    is arbitrary, for simplicity let 

v.   a, =     f sdz   / J wdz (25) 

Aj« -Ao(S-ja)ej0d (26) 

where   A     is arbitrary.    Then from (17) it is found that 

2 

while from (16-a) 

A, r-.  -A (p +ja)e"j$d (27) 

Bj  =  -20A   ead   . (28) 

Using the dispersion relation in the form given in (18), which is valid for both open-circuit 

and short-circuit bisection modes, it follows that 
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B, =   -2ßA    Uli s-i
Zs6ead 

3 o   9 - ja (29) 

With these expressions in equations (12),  (13) and (15) for the fields in the three regions, 

£   in Region 1 is found to be 

while in Region 3 it is 

1 -   4|Ao|V.eoe2a<z+d) [xokx(k
2-k

2) +^ky(a2
+k2)] (31) 

and finally in Region 2 it is 

8   =   |Art|
2ne„(a2+02) {2[x   k   (k2-k2)+yk   (B2 + k2)l   + —       'o'        o L—oxo      y-^-oy x  J   r 

00 

The quantity   S =     £ d z   is now calculated to be 

-0» 

S = 4|Ao|
2.eo(a2 + 32){-xokx(k2.k2)[i+d] 

(32) 

y 

i , 2 + ^ky[ik* + d(X-1)(ky-V:i}   • (33) 

In order to determine the stored energy,  observe that in the plasma slab 

9uu 5u) 
ri    o    o 
0     1 + X    0 

[o      0       1 
(34) 

Thus in Region 2,  the time averaged stored energy density,   which is given by'   '      , 

is found to be 

w   =2 
.t     3HJ e 

— 3u) • I + ü0 in i (35) 
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w  =   I   lAol2^^+92) [4^-^)(Xk2
y.k2)   - 

(36) 
Outside the slab,  the time averaged stored energy density has the form 

w  =  lLeo|E|
2+yoiH |2] (37) 

so that in Region 1 

* =  2|A0|
2e082C(K2

+k2)(k2
+a2)+{k^-k2)2]e-2a(z-d) (38) 

while in Region 3 

w  = 2|Ao|2eoß2L(k2
+k2)(k2

+a')MkJ-k2)2]e2a<z+d> (39) 

a) 

Cedculating   W =      wd z , it is found that 

W = 4lA   I    e   (a +S2) {d(k2-k2)(Xk2-k2) + i[k2k2 +(k2-k2)2] }   . (40) 
'   o'      o L     y     o        "     o       a     x   y        y      o       J 

In deriving the above power and energy formulas,  extensive use has been made of the 

dispersion relation given in (18) and the formulas (11) and (14) fcr   a and 0.    Using the 

above expressions for   S and W,  the energy transport velocity is seen to be 

W"'1J       d(k2-k2)(Xk2-k2) + i[k
2k2 + (k

2-k2)2] ■ (41) 
v  y     o y    o'      a     x   y y     o    J 

3D 
In order to compute the group velocity   7   x ,  the formula   7.   m - - 7    D /     s 

—t _t K        S     o (JU 

from implicit function theory will be used where the function   D (k  , tu)   is the left-hand 



side of (18).    It is found that 

•x   k   (A + dl+y   k   [d(X-l)+ T^^-T-I 
— o   x  a A)   y * '. a6\ 

k2X 

a(SL±| ) (42) 
V= x iÄ1 

d(xk2- k2) + - (k2 - k2) +   x, y x 
V    o      a    y     o       ^2.^. 

y     o' 

2      2 If both the numerator and denominator of the above expression are multiplied by   (k   -k ) 
2      2 2     2 Y      0 

and it is recognized that   X(k   - k ) ■ a +0  , 7.   uu   will be seen to be identical with  S/W, y     o K — 
as predicted in Reference 1. 

The example worked out above also illustrates the fact that,  in general,  the 

direction of £   as well as its magnitude can vary wilh   z.    This can be seen from equation 

(32) for   s    n Region 2 if it is recognized that the vectors   [x   k   (k-k)+y   k(0+k)] 
"22 22 x y y x 

and   [x   k   ^kn" K ^ + XiK^ "^  ^   are parallel only for   k =0.    Since the coefficient of 

the first vector is independent of   z   while the coefficient of the second vector depends on 

z, the direction of the vector sum,  which gives   £,  will depend on   z   for all surface waves 

for which   k   ^ 0. x 
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APPENDIX 

The purpose of this Appendix is to investigate the possible contribution to a sur- 

face wave field from the plane wave fields in the plasma that are associated with the 

solutions   jt = W^f," k,.   of the plasma plane wave dispersion rela ion.    The vector char- 

acter of these plasma plane waves is that of H-type modes and has the form 

e'    =   C[x H - z   k   1 
— —o       —o   xJ 

h' C    [-x   k   k    +y (k2-k2)- z  Kk  ] 
—O    V    X       -i-Q     O       v'     —n      vJ 

LUU -o   y   x     -^o    o     y -o     y 

(43) 

with   C   an arbitrary constant.    The vector character of those plane waves in the air 

regions that have the H-type mode form,  and will thus allow a simple application of the 

continuity conditions at   z = ±d,  is 

h' —a 

DLx   H    - z   k   ] -O^a     -o   xJ 

D 
um. 

C-x  k   k    + y   (k2-k2)- z   K   k   ] 
^  -o   y   x     -^-o*   o     y     -o   a   y 

(44) 

with   «    = ±j a and   a   as defined in (11).    Note that   K = ± ia   also. 

In Region 1,  H     must be taken as   -ja   to ensure that  j£ and H are zero at   z = <». 

Similarly,  in Region 3,  Ha   must be taken as   ja-    Denoting the amplitudes in Regions 1 and 

3 as   P,  and D  ,  respectively,  and letting   C.  and C?   be the amplitudes of the plasma 

plane waves corresponding to   H = -ja and * = ja i  respectively,  the continuity conditions 

at   z = d   result in the equations 

.Die-ad   s-Cje-^ + C^ 

D   e -ad   =   c^-ad^^ad 
(45) 

when the fields in Region <i are assumed to be the sum of the two H-type plane waves.    The 

continuity conditions at   z = -d   can be written as 

D3e 

D3e 

-ad   =   .c^ad^^-ad 

-ad   =     c^ad^^-ad 
(46) 
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These equations have only the trivial solutions   C  =C =D =D = 0 and hence no surface 

wave can exist whose fields in the plasma are a sum of the two H-type plasma plane waves, 

which propagate as   H = ±ja • 

The physical reason why no surface wave exists that contains the above-mentioned 

plane waves is that the waves of this polarization do not "see" the plasma,   since the 

in'inite D. C.  magnetic field along   y  prevents the electrons from moving in response to 

an R. F.  electric field that,  as in this case,  is purely transversfc to   y.    In effect,  for 

waves of this polarization,  no slab on which to have surface waves is present. 
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